ZB-28

Zero Bias Diode

- low junction capacitance
- functional through W-band
- input signal dynamic range −60 to +14 dBm

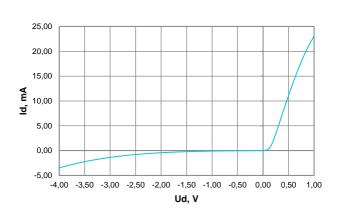
The ZB-28 is a zero bias beam-lead diode. It is ideally suited as a switching and limiting element for hybrid-integrated microwave modules with general sealing. The ZB-28 can be used in schemes of power detectors and frequency converters. This diode has wide dynamic and frequency range of signal converter.

Electrical specifications (T = 25 °C)

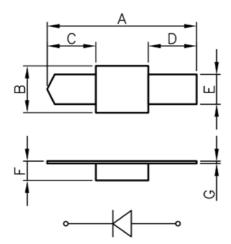
Symbol	Parameter	Min.	Тур.	Max.	Unit
Ct	Total capacitance	_	35	41	fF
Ci	Junction capacitance	-	24	30	fF
R _v	Video resistance (U _F =0 V)	1.6	1.8	2.0	kOhm
G	Voltage sensitivity	500	550	_	mV/mW
TSS	Tangential sensitivity	-	-60-	_	dBm

Absolute maximum ratings

Parameter	Value	Unit
RF Input power (CW)	+17	dBm
Burnout power	+20	dBm
Reverse voltage	4	V
Forward current	15	mA
Operating temperature	- 40+85	°C
Storage temperature	− 55…+125	°C


Diode model parameters

$$VD1$$
 $VD1$
 $VD2$
 C_P
 $VD2$
 C_P
 C_P
 C_I
 C_I


Parameter	VD1	VD2	Unit
C _i	12	12	fF
R _p	27	100	Ohm
n	1,13	32	_
Is	1,1E-5	4,0E-5	A
L	0,3	0,3	nH
Cp	11	11	fF

Typical characteristics

Mechanical data

Symbol	Value	Unit
Α	880	
В	230	
С	270	
D	270	μm
E	160	
F	55	
G	3	

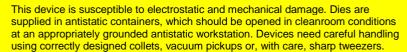
NOTE Metallization: gold.

V01.0001

Application notes

Mounting

The chip is back-metallized with gold and can be die mounted with AuSn eutectic alloy or with electrically conductive adhesive. The mounting surface should be clean and flat. Do not expose die to a temperature above 300 degrees for more than 10 seconds.


Wire Bonding

Microstrip substrates should be brought as close to the die as possible in order to minimize ribbon bond length. Recommendation for RF pads is two wires 25 µm in diameter or a foil stripe with minimal length. Wedge thermocompression bonding or ball bonding may be used to attach ribbons or wires to the anode bonding pad. All die attach and bonding methods should be compatible with gold metal.

DC coupling

All ports are DC coupled. RF_Input ports should be DC blocked externally with a series capacitor, whose value has been chosen to pass the necessary frequency range.

Recommended ESD Management

